76. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz stands for Hertz, which means a cycle-per-second. The angular frequency  $\omega$  is similar to frequency except that  $\omega$  is in radians-per-second. Recalling that  $2\pi$  radians are equivalent to a cycle, we have  $\omega = 2\pi f \approx 2.8 \times 10^3$  rad/s.

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity amplitude  $v_m = \omega x_m$ . With  $x_m = 0.00075$  m and the above value for  $\omega$ , this expression yields  $v_m = 2.1$  m/s.

(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration amplitude  $a_m = \omega^2 x_m$ , which (if the more precise value  $\omega = 2765$  rad/s is used) yields  $a_m = 5.7$  km/s.